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ABSTRACT

This report forms the user's guide for Version 1.0 of LSSOL, a set of Fortran 77 subroutines for QUA (_ry
linearly constrained linear least-squares and convex quadratic programming. The method of LSSOL \ECrE

is of the two-phase, active-set type, and is related to the method used in the package SOL/QPSOL,
"..l1 et al., 1984b),Two main features of LSSOL are its exploitation of convexity and treatment
of singularity.

LSSOL may also be used for linear programming, and to find a feasible point with respect to a
set of linear inequality constraints. LSSOL treats all matrices as dense, and hence is not intended
for large sparse problems. 4 . - -.. *, , ,. ,
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1. PURPOSE 1

q 1. PURPOSEaclsof(latcrrnn
LSSOL is a collection of Fortran 77 subroutines designed to solve a class of quadratic programming
problems that are assumed to be stated in the following general form: -, -.

LCLS minimize F(x) "-"%
zER'

subjectto I X U'

where C is mL x n (mL may be zero) and F(x) is one of the following objective functions:

FP: None (find a feasible point for the constraints)

LP:

QPl: 1xTAx A symmetric and positive semi-definite,

QP2: cTx + 1nTAz A symmetric and positive semi-definite,

QP3: 1ZTATAx A m x n upper-trapezoidal,

QP4: cTx + xTATAZ A m x n upper-trapezoidal, .-.

LSl: !jib- Axlt A m x n,

LS2: cTx + Jib - AJI2  A in x n,

LS3: 1-ib - AxJI 2  A m x n upper-trapezoidal,

LS4: cTx + jib - Axti 2  A m x n upper-trapezoidal,

. with c an n-vector and b an rn-vector. The specific objective function to be minimized is selected
using the optional parameter Problem Type (see Section 4.2). In all that follows, problems (4
type "LP", "QP" and "LS" will be referred to as linear programming, quadratic programming and
constrained least-squares problems respectively.

The constraints involving C will be called the general constraints. Note that upper and lower
bounds are specified for all the variables and for all the general constraints. An equality constraint
is specified by setting 1i = ui. If certain bounds are not present, the associated elements of I or u
can be set to special values that will be treated as -oc or +oc. (See the description of the optional

parameter Infinite Bound in Section 4.2.)
The constant second-derivative matrix of F(x) is defined as H, the Hessian matrix. In the

LP case, H = 0. In QP cases I and 2, H = A; and in QP cases 3 and 4, 11 = ATA. In all LS
cases, H1 = A T A. Problems of type QP3 or QP4 with A not in trapezoidal form should be solved
as type LS1 or LS2 with b = 0. When considering problems of type LS, we shall refer to A as the
least-squares matrix and to b as the vector of observations.

The user must supply an initial estimate of the solution. If the Hessian imiatrix is non-singular,
LSSOL will obtain the unique (global) minimum. If H is singular, the solution may still be a global
minimum if all active constraints have nonzero Lagrange multipliers. Otherwise, the solution
obtained will either be a weak minimum (i.e., with a unique optimal objective value, but an

infinite set of optimal x), or else the objective function is unbounded below in the feasible region.
The last case can occur only when F(x) contains an explicit linear term (as in problems of type
LP, QP2, QP4, LS2 and LS4).

The LSSOL package contains approximately 6000 lines of ANSI Fortran 77, of which about
50% are comments.
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2. DESCRIPTION OF THE ALGORITHM Ur

Here we briefly siiuumarize the main features of the method (if LSSOL. Where possible, explicit '

reference is inade to tlit' names of variables that are parameters of subroutine LSSOL or appear in
/ tile printed output. .,'

The method of LSSOL is a two-phase (primal) quadratic programming method (see Gill et al.,
198tb) with features to exploit the convexity of the objective function. (In the full-rank case, the
method is related to that of Stoer, 1971.) The two phases of the method are: finding an initial
feasible point by minimizing the sum of infeasibilities (the feasibility phase), and minimizing the
quadratic objective function within the feasible region (the optimality phase). The computations
in both phases are performed by the same subroutines. The two-phase nature of the algorithm is
reflected by changing the function being minimized from the sum of infeasibilities to the quadratic
objective function. The feasibility phase does not perform the standard simplex method (i.e., it .
does not necessarily find a vertex), except in the LP case when TtL < n. Once any iterate is feasible,
all subsequent iterates remain feasible.

In general, an iterative process is required to solve a quadratic program. (For simplicity, we
shall always consider a typical iteration and avoid reference to the index of the iteration.) Each
new iterate i is defined by

= X + ap, (1)

where the step length a is a non-negative scalar, and p is called the search direction.
At each point x, a working set of constraints is defined to be a linearly independent subset

of the constraints that are satisfied "exactly" (to within the tolerance defined by the optional
parameter "Feasibility Tolerance"; see Section 4.2). The working set is the current prediction
of the constraints that ho1 with equality at a solution of LCLS. The search direction is constructed
so that the constraints in the working set remain unaltered for any value of the step length. For
a bound constraint in the working set, this property is achieved by setting the corresponding

component of the search direction to zero. Thus, the associated variable is fixed, and specification
of the working set induces a partition of x into fixed and free variables. During a given iteration,
the fixed variables are effectively removed from the problem; since the relevant components of the
search direction are zero, the columns of C corresponding to fixed variables may be ignored.

Let i,, denote the number of general constraints in the working set and let nFx denote the
number of variables fixed at one of their bounds (row and nFx are the quantities "Lin" and "Bnd"
in the printed output from LSSOL). Similarly, let n, (nFR = n - nFX) denote the number of free
variablhs. At every iteration, the variables are re-ordered so that the last nFx variables are fixed,
with all other relevant vectors and matrices ordered accordingly. The order of the variables is -

indicated by the list of indices KX, a parameter of LSSOL.
Let C", denote the i,,. x nFR submatrix of general constraints in the working set corresponding

to the fret, variables, and let p,. denote the search direction with respect to the free variables only.

The general constraints in the working set will be unaltered by any move along p if

CFRPFR 0. (2)
In order to compute p,,,, the TQ factorization of C,, is used:

CHQFR = (0 T), (3)

where T is a nonsingular ,tf,, x it,, reverse-triangular matrix (i.e., ti, 0 if i + j < ,,,), and the

non-singular I,,, h" nR, matrix Q, is the product of orthogonal transformations (see Gill et al.,
198-1a). If tit'e clunins of Q,, are partitioned so that

QFR (Z Y), (4)

. . . *- * . . . . . . . . . . . *°.-
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where Y is n,, x rno,, then the n, (n. = nFR - mt) columns of Z form a basis for the null space

of C,,. Thus, PR will satisfy (2) only if

for some vector Pz, (5)

Let Q denote the n x n matrix

Q~ (6)

where I, is the identity matrix of order nFx. Let R denote an n x n upper-triangular matrix (the

Cholesky factor) such that M .
QTHQ - RTR, (7) -.

and let the matrix of first n, rows and columns of R be denoted by R. (Recall that H in (7) will
in general have been re-ordered.)

The definition of Pz in (5) depends on whether or not the matrix R, is singular at x. In the
non-singular case, Pz satisfies the equations
... ~ T ..

RZRzPZ = -gZ, (8)

where g, denotes the vector ZTgF5 and g denotes the objective gradient. (The norms of 9 R is
the printed quantity Norm Gf.) When Pz is defined by (8), x + p is the minimizer of the objective
function subject to the constraints (bounds and general) in the working set treated as equalities.
In general, a vector f1 is available such that RTfz, = -9, which allows Pz to be computed from.

" . a single back-substitution Rzp, 12. For example, when solving problem LS1, f1 comprises the -

first n, elements of the transformed residual vector

f 1= P(b- Az), (9)

which is recurred from one iteration to the next, where P is an orthogonal matrix.

In the singular case, pz is defined such that

Rzp, 0 and gzp2 < 0. (10)

This vector has the property that the objective function is linear along p and may be reduced by
any step of the form x + op, a > 0.

The vector ZTg,.5 is known as the projected gradient at x. If the p)rojected gradient is zero,
:. is a constrained stationary point in the subspace defined by Z. During the feasibility phase, the
projected gradient will usually be zero only at a vertex (although it may be zero at non-vertices in
the presence of constraint dependencies). During the optimality phase, a zero projected gradient
implies that x ininimuizes the quadratic objective when the constraints in the working set are treated
as equalities. At a constrained stationary point, Lagrange multipliers A, and A, for the general
and bound constraints are defined from the equations

rA = gFR and ' (11)

Given a positive constant 6 of the order of the machine precision, the Lagrange multiplier A,
corresponding to an inequality constraint in the working set is said to be optitmal if A, <_ 6 when

...................................................
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the associated constraint is at its upper bound, or if A, -6 when the associated constraint is
at its lower bound. If a multiplier is non-optinvil, the objective function (either tit' true objective q j
or the sum of infeasibilities) can be reduced by deleting the corresponding constraint (with index
Jdol: see Section 5) from the working set.

If optintal multipliers occur during tite feasibility T)hase and the suni of infi'asihilities is nonzero, i"-

there is no feasible point, and LSSOL will continue until the minimum value of the suin of infi-asi-"-..

bilities has been found. At this point, the Lagrange multiplier Aj corresponding to ai inequality
constraint in the working set will be such that -- (1 + b) < Aj < 6 when the associated constraint
is at its upper bound, and -6 < Aj _< 1 + 6 when the associated constraint is at its lower bound.

Lagrange multipliers for equality constraints will satisfy JAjI < 1 + 6.

The choice of step length is based on remaining feasible with respect to the satisfied constraints. -,

If R, is nonsingular and x + p is feasible, a will be taken as unity. In this case, the projected
gradient at i will be zero, and Lagrange multipliers are computed. Otherwise, a is set to tt,, the
step to the "nearest" constraint (with index Jadd; see Section 5), which is added to the working
set at the next iteration.'

If A is not input as a triangular matrix, it is overwritten by a triangular matrix R satisfying
(7) obtained using the Cholesky factorization in the QP case, or the QR factorization in the LS case.
Column interch;nges are used in both cases, and an estimate is made of the rank of the triangular .
factor. Thereafter, the dependent rows of R are eliminated from the problem.

Each change in the working set leads to a simple change to CR: if the status of a general
constraint changes, a row of C,1 is altered; if a bound constraint enters or leaves the working set,
a rolunn of C,,, changes. Explicit representations are recurred of the matrices T, QR and R; and
of vectors QT, QTc and f, which are related by the formulae

f Pb - i QTx (b 0 for the QP case),

and .

Qrq = QTc - RTI.

Note that the triangular factor R associated with the Hessian of the original problem is updated
(hiring both the optimality and the feasibility phases.

The treatment of the singular case depends critically on the following feature of the matrix
updating schemes used in LSSOL: if a given factor R, is non-singular, it can become singular
during subsequent iterations only when a constraint leaves the working set, in which case only its
lIst diagonal element can become zero. This property implies that a vector satisfying (10) may
be found using the single back-substitution fRZpz = C., where P, is the matrix R, with a unit
last diagonal, and c, is a vector of all zeros except in the last position. If H is singular, the
matrix I? (and hence R,) may be singular at the start of the optiniality phase. however, R, will RU

*.) be non-singular if enough constraints are inicluded in the initial working set. (The null matrix is
- positive definite by definition, corresponding to the case when Cft contains nFI constraints.) The

idea is to include as many general constraints as necessary to ensure a nion-singular R.-
At the beginining of each phase, an upper-triangular matrix R, is determined that is the largest ""

non-singular hading snbinatrix of R,. The use of interchanges (hiring the factorization of A tends p "
to maximize the dimension of R1. (The rank of R, is estimated using the optional parameter Rank
Tolerance: see Section 4.2.) Let Zi denote the columns of Z correspomding to R1 , and let Z be
partitioned as Z = (Z Z 2 ). A working set for which Z, defines the null space can he obtained

7q,~-' d,7,
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by inchuling the rows ,)fZ T as "artificial constraints". Minimization of the objective function then
proceeds within the suhspace defined by Z 1.

The artificially augmented working set is given by (12)

-;X ) .,:(12-

so that 1i,, will satisfy C,,pP,, 0 and ZTpF, = 0, By definition of the TQ factorization, 0,
automatically satisfies the following:

C ~, = ; ) zf Qr. = zf) ( Zl Z2 Y 0 , .
zz 2

where

and hence the TQ factorization of (12) requires no additional work.
The matrix Z 2 need not be kept fixed, since its role is purely to define an appropriate null space;

the TQ factorization can therefore be updated in the normal fashion as the iterations proceed.
No work is required to "delete" the artificial constraints associated with Z 2 when ZTgFR 0,
since this simply involves repartitioning Q,,. When deciding which constraint to delete, the
"artificial" multiplier vector associated with the rows of Z2' is equal to ZTgR, and the multipliers
corresponding to the rows of the "true" working set are the multipliers that would be obtained if
the temporary constraints were not present.

The inuminber of colimns of Z and Z, the Euclidean norm of ZfgaF, and the condition estimator -
of R, appear in the )rinted output as Nz, Nzl, Norm Gzl anid Cond Rzl (see Section 5).

Although the algorithm of LSSOL does not perform simplex steps in general. there is one _- -
exception: a linear program with fewer general constraints than variables (i.e., mL < n). (Use
of the simplex method in this situation leads to savings in storage.) At the starting point, the
"natural" working set (the set of constraints exactly or nearly satisfied at the starting point)
is augmented with a suitable number of "temporary" bounds, each of which has the effect of
temporarily fixing a variable at its current value. In subsequent iterations, a temporary bound is

treated as a standard constraint until it is deleted from the working set, in which case it is never
ad(hde again.

One of the most important features of LSSOL is its control of the conditioning of the working
set. whose nearness to linear dependence is estimated by the ratio of the largest to smallest diagonals
of the TQ factor T (the printed value Cond T: see Section 5). In constructing the initial working set,
constraints are excluded that would result in a large value of Cond T. Thereafter, LSSOL allows
constraints to be violated by as much as a user-specified Feasibility Tolerance (see Section
4.2) in order to provide, whenever possible, a choice of constraints to be added to the working set -",

at a given iteration. Let a, denote the nmaximitn step at which x + a,,p does not violate any
constraint by more than its feasibility tolerance. All constraints at distance a (a < a,,) along p
from the current point are then viewed as acceptable candidates for inclusion in the working set.
The constraint whose normal makes the largest angle with the search direction is added to the
working set. In order to ensure that the new iterate satisfies the constraints in the working set as " .

accurately as possible, the step taken is the exact distance to the newly added constraint. As a

. . . ....... .I . ..- - - - - - - - - - - - - - - - - -. .. - . .
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consequence, negative steps are occasionally permitted, since the current iterate may violate the.

constraint to be added by as much as the feasibility tolerance. . -

LSSOL has been designed to be efficient when used to solve a sequence of related problems- - for
example, within a sequential quadratic programming method for nonlinearly constrained optimiza-
tion (e.g., the NPSOL package of Gill et aL., 1986). In particular, the user may specify an initial
working set (the indices of the constraints believed to be satisfied exactly at the solution); see the
discussion of the optional parameter Warm Start in Section 4.2.

V-

-

- ,*...-..,. ,-
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3. SPECIFICATION OF SUBROUTINE LSSOL
The formal specification of LSSOL is the following:

SUBROUTINE LSSOL M , N,
NCLIN, NROWC, NROWA,
C, BL, EU. CVEC,
ISTATE, KX, X, A, B,

INFORM, ITER. OBJ, CLAMDA,
IW, LENIW, W, LENW)

INTEGER M, N, NCLIN
NROWG, NROWA, INFORM, ITER, LENIW, LENW

INTEGER ISTATECN+NCLIN). KXCN), IWCLENIW)
REAL OBJ
REAL CCNROWC,*i), BLCN+NCLIN), BUCN+NCLIN),

CVEC(*), XCN), A(NROWA,*),
BC.), CLAMDACN+NCLIN), WCLENW)

Note: Here and elsewhere, the specification of a parameter as REAL should be interpreted as working

precision, which may be DOUBLE in some installations.

3.1. Formal parameters

3M (Input) The niumber of rows in the array A. If the problem is specified as type FP or

LP (see Section 4), M is not referenced andl is assumed to be zero.

If the problem is of type QP, M will usually be N, the number of variables. However, a

value of M less than N is appropriate for QP3 or QP4 if A is an upper-trapezoidaI mix
with M rows. Similarly, M may be used to dlefinle the dimension of a leading block oif

non-zeros in the Hessian matrices of QPI or QP2, in which case the last N - M rows and

p columns of A are assnumed to be zero. In the QP case, M should not be greater than N;
if it is, the last M - N rows of A are ignored.

If the problem is specified as type LS1, LS2, LS3 or LS4, M is also the dimension of the

array B. Note that all possibilities (M < N, M N and M > N) are allowed.

N (Input) The number of variables, i.e., the dimension of X. (N must be positive.)

*NCLIN (Input) The number of general linear constraints in the problem. (NCLIN may be

zero.)

NROWC (Input) The (declared row dimension of C. (DJROWC must be at least 1 andl at least

r- - NCLIN.)

NROWA (Input) The declared row dlimension of the array A. (NROWA miust be at least 1 andW

at least M.)

C (Input) A real array of declared dimension (NROWC,*), where the second dimension

ni;,st be at least N. The i-tb row of C contains the coefficients of the i-tli general

constraint, i = 1 to NCLIN. If NCLIN is zero, C is not accessed; the actutal p~arameter

may then be any convenient array or an array with dimension (1 , 1).

BL (Input) A real array of (dimension at least N + NCLIN that contains the lower bounds

for all the constraints, in the fo~lowing order (which is also ob~servedl for BU, ISTATE,
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andl CLAIIDA) : thle first N elemnents of BL. contain the lower bounds )11 it the valriales;( if
.'CL IN -- ), the next NCLIN ceuient s of BL contai ii the lower boi ids for the general1 -

linear conjst raints. Iii order for the problemn specification to be' incauingfid, It is
req nired that BE.(j ) < BU(j ) for all j. To specify a noii-excxiet. lower bound10 (i.e.,

-,x). the value used mnust satisfy BL(j) K --BIGBND, where BIGBND is the valuie (if
the o)ptio)nal paraiiiter Infinite Bound, whose (lefalilt value is 10"( (see Section 41.2).
To specif~y the j-tht constraint as ani eqnality, the user iist set BL(j) BU(j) ,-
say, wheire Jill < BIGBND.

* BU (Input) A real array of liniensioiI at least N + 14CLIN that contains the upper)C bounds
for all thle Constraints. in the sarne ordler described above tinder BE.. To specify a
nont-existent upJper bound1( (i.e., uj = oc), the value used muist satisfy BU(j) > BIGBND.

CVEC (Iniput) A real array of dinmension at least N containing the coefficients of the explicit
linear termi of the obj'ective function. If the probleni is of type FP, QP1, QP3, LS1 or
LS3. CVEC is not acces.sed; CVEC mnay then be (declaredl to be of (iensiorl (1), or the
actual paramieter mnay be any conveiiient array.

ISTATE (Input) An integer array of dimiension at least N + NCLIN. ISTATE need not be
iniit ialized if Cold Start (thme (defauilt) is specified. For a Warm Start, ISTATE specifics
tile decsiredl status of the constraints at thle start of tIhe feasibility phase. The ordlering
of ISTATE is the samie as that dlescribedl above for BL., i.e., the first N conliponelts of
ISTATE refer to the tipper and lower hounds on the variables, and coipoxicuts N + 1
through N + NCLIlN refer to the ulpper and lower bounds onl Cx. Possible values for
ISTATE are:

ISTATE(j) Meaning .-

0 The corresponding constraint shonld not be in the initial working set.

I The constraint shtouIld he ill the initial working set at its lower bound.

2 The constraint should he inl the initial working set at its tipper bouind.

3 Thle constraint should be in the initial working set ais an equality. This
value must not be specified unless BL(j) =BU(j). The values 1, 2 or 3
all have the same eff'ect when BL(j) =BU(j).

Other valtues of ISTATE are also acceptab~le. In particular, if LSSOL has been called
previouisly with the samne values of N and NCLIH, ISTATE alreadly contain,, satisfactory
inforination.--

(Output) If LSSOL exits with INFORM = 0, 1 or 3, the vatlues in the array ISTATE in-
dimcate the statuls (of the constraints in thle active set at tile solution. Otherwise, ISTATE
indlicat es time coiimjpositioii of thle working set at thte final iterate. The significance of
each possible value of ISTATE(j) is as follows:

ISTATE(j) M ean ing

2 The constraint violat es its lower b)ound( by miore than the( feasibility tol-

erance.

-1 The constraint violates its upper hound by niore than the feasibility
tolerance.

0 Tile constraint is satisfied to withlinm thme feasibilit to l erance, buit is not

in the working set.
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1 This inequality constraint is included in the working set at its lowerbound.

2 This inequality constraint is included in the working set at its upper
bound.

3 The constraint is included in the working set as an equality. This value
of ISTATE can occur only when BL(j) = BU(j).

KX (Input) An integer array of dimension at least N. KX must be det ned off input for
problems QP3, QP4, LS3 or LS4, i.e., problems in which A is specified as an upper-
trapezoidal matrix. KX must define the order of the columns of the natrix A with

respect to the ordering of X. Thus, if KX(1) = 5, column 1 of A is the column associated
with variable X(5). For problems of type FP, LP, QPI, QP2, LS1 or LS2, KX need not
be initialized.

(Output) KX gives the order of the columns of A with respect to the ordering of X,
as described above.

X (Input) A real array of dimension at least N. X contains the initial estimate of the
solution.

(Output) X is the last iterate of LSSOL. If INFORM = 0, 1 or 3, X will be an estimate
of the solution.

A (Input) A real array of dimension (NROWA,*), where the second diniension must be
at least N. A defines the data matrix A in LCLS.

If the problem is of type FP or LP, A is not accessed and may be dimensioned (1,1).

If the problem is of type QP1 or QP2, the first M rows and columns of A must contain
the leading M by M rows and columns of the symmetric Hessian matrix. Only the
diagonal and upper-triangular elements of the leading M rows and columns of A arf

referenced. The remaining elements are assumed to be zero and need not be assigned.

For problems QP3, QP4, LS3 or LS4, the first M rows of A must contain an M by N upper-
trapezoidal factor of either the Hessian matrix or the least-squares matrix, ordered
according to the KX array (see above). The factor need not be of full rank, i.e., some of
the diagonals may be zero. However, as a general rule, the larger the dimension of the
leading non-singular submatrix of A, the fewer iterations will be required. Elements
outside the upper-triangular part of the first M rows of A are assumed to be zero and
need not be assigned.

If a constrained least-squares problem contains a very large number of observations,
storage limitations may prevent storage of the entire least-squares matrix. In such
cases, the user should transform the original A into a triangular matrix before the
call to LSSOL and solve the problem as type LS3 or LS4.

(Output) If the problem is of type LS or QP, A contains the upper-triangular matrix
R of (7), with columns ordered as indicated by KX (see above). This matrix may

e. be used to obtain the variance-covariance matrix or to recover the upper-triangular

factor of the original least-squares matrix.

B (Input) A real array of dimension at least M. If the )roblem is of type FP, LP or QP,
B is not accessed and may l)e dimensioned (l). If the problem is of type LS, B must
contain the vector of observations b in problem LCLS.



10 User's Guide for LSSOL 1.0

(Output) On exit from a problem of type LS, B contains the transformed residual
vector (9).

INFORM (Output) An integer that indicates the result of LSSOL. (If Print Level > 0, a
short description of INFORM is printed.) The possible values of INFORM are:

INFORM Meaning

0 X is a strong local minimum. (The projected gradient is negligible, the
Lagrange multipliers are optimal, and R, is non-singular.)

1 X is a weak local minimum. (The projected gradient is negligible, the
Lagrange multipliers are optimal, but R, is singular or there is a small
multiplier.) This means that the final X is not unique.

2 The solution appears to be unbounded. This value of INFORM implies "
that a step as large as Infinite Bound would have to be taken in order
to continue the algorithm. This situation can occur only when A is
singular, there is an explicit linear term, and at least one variable has
no upper or lower bound.

3 No feasible point was found, i.e., it was not possible to satisfy all the
constraints to within the feasibility tolerance. In this case, the constraint
violations at the final X will reveal a value of the tolerance for which a
feasible point will exist--for example, if the feasibility tolerance for each
violated constraint exceeds its Residual at the final point. The modified
problem (with an altered feasibility tolerance) may then be solved using
a Warm Start (see Section 4).

4 The limiting number of iterations (determined by the parameters Feasi-
bility Phase Iterations and Optimality Phase Iterations) was
reached before normal termination occurred.

5 The algorithm could be cycling, since a total of 50 changes were made
to the working set without altering X. U

6 An input parameter is invalid.

ITER (Output) An integer that gives the total number of iterations performed in the
feasibility phase and the optimality phase.

OBJ (Output) The value of the objective function at X if X is feasible, or the sum of
infeasililities at X otherwise. If the problem is of type FP and X is feasible, OBJ is zero.

CLAMDA (Output) A real array of dimension at least N + NCLIN that contains the Lagrange
multiplier for every constraint with respect to the current working set. The ordering
of CLAMDA follows the convention given above under BL, i.e., the first N components
contain the multipliers for the bound constraints on the variables, and the remaining
components contain the multipliers for the general linear constraints. If ISTATE(j) = 0
(i.e., constraint j is not in the working set), CLAMDA(j) is zero. If X is optimal,
CLAMDA(j) should be non-negative if ISTATE(j) = 1 and non-positive if ISTATE(j) 2.

.
3.2. Workspace parameters

IW (Input) An integer array of dimension LENIW that provides integer workspace for
LSSOL.

,.5.-

*5'5
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pLENIW (Input) The dimension of IW. LENIW must be at least N.

W (Input) A real array of dimension LENW that provides real workspace for LSSOL.

LENW (Input) The dimension of W. If the prob~lem is of type FP and N < NCLIN, LENW must
be at least 2 N2 + 6 N + 6 NCLIN. If the problem is of type FP and 0 < NCLIN < N, LENW
mnust be at least 2 (NCLIN + 1)2 + 6 N + 6 NCLIN. If NCLIN = 0, LENW miust be at least
6 N. RK
If the problem is of type LP and N < NCLIN, LENW must be at least 2 N2 + 7 N + 6 NCLIN.
If the problem is of type LP and N > NCLIN > 0, LENW must be at least 2 (NCLIN +
1)2 + 7 N + 6 NCLIN. If the problem is of type LP and NCLIN = 0, LENW must be at least

~7 7N.

For problems QP1, QP3, LS1 and LS3, LENW must be at least 2N2 + 9 N + 6 NCLIN if
NCLIN > 0, and at least 9 N if NCLIN =0. For problems QP2, QP4, LS2 and LS4, LENW
must be at least 2 N2 + ION + 6NCLIN if NCLIN > 0, and at least ION if NCLIN =0.

* If Print Level> 0, the amounts of workspace provided and required are printedI. As an alterna-
tive to computing LENIW and LENW from the formulas given above, the user may prefer to obtain
appIropriate values from the output of a preliminary run with a positive valute of Print Level and
LENIW and LENW set to 1. (LSSOL will then terminate with INFORM =6.)
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" 4. OPTIONAL INPUT PARAMETERS

Several optional parameters in LSSOL define choices in the problem specification or the algorithm F
logic. In order to reduce tihe number of formal parameters of LSSOL, these optional parameters
have associated defailt values (see Section 4.2) that are appropriate for most problems. Therefore,
the user need specify only those parameters whose values are to be different from their default
values. The remainder of this section can be skipped by users who wish to use the default values
for all optional parameters.

Each optional parameter is defined by a single character string of up to 72 characters, con-
taining one or more items. The items associated with a given option must be separated by spaces

"-" or equal signs (=). Alphabetic characters may be upper or lower case. An example of an optional
,. parameter is the string

Print level = 5

For each option, the string contains the following items.

1. The keyword (required for all options).
2. A phrase (one or two words) that qualifies the keyword (only for some options).
3. A number that specifies either an INTEGER or a REAL value (only for some options).

Such numbers may be up to 16 contiguous characters in Fortran 77's I, F, E or D
formats, terminated by a space.

Blank strings and comments are ignored and may be used to improve readability. A comment begins
with an asterisk (*) and all subsequent characters are ignored. If the string is not a comment and
is not recognized, a warning message is printed on the specified output device (see Section 7.5).
Synonyms are recognized for some of the keywords, and abbreviations may be used.

The following are examples of valid option strings for LSSOL:

NOLIST
warm start
COLD START
Problem type = Least Squares

Problem type = LP

Problem Type QP4
Feasibility tolerance 1.OE-8 * for IBM in double precision
CRASH TOLERANCE = .002
* This string will be completely ignored.

Feasibility phase iteration limit 100
Optimality phase iteration limit 10 *

4.1. Specification of the optional parameters

Optional parameters may be specified in two ways, as follows.

e Using subroutine LSFILE and an external file

The subroutine LSFILE provided with the LSSOL package will read options from an external options
file, and should be called before a call to LSSOL. Each line of the options file defines a single optional
parameter. The file must begin with Begin and end with End. (An options file consisting only of
these two lines corresponds to supplying no options.)

T.e specification of LSFILE is

SUBROUTINE LSFILE( IOPTNS, INFORM
INTEGER IOPTNS, INFORM

* . . . . .. . . . . . . . . . . . . .. ,
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IOPTNS must be the unit number of the options file, in the range 10, 991, and is unchanged on exit

froin LSFILE. INFORM need not be set on entry. On return, INFORM will be 1) if the file is at valid
options file and IOPTNS is in the correct range. INFORM will be set to I if IOPTNS is out of range,

and will be set to 2 if the file does not begin with Begin or end with End.

An example of a valid options file is

Begin

Print level = 5

Problem type LP
End

If the options file is on unit number 5, it can be read by the call

CALL LSFILE( 5, INFORM )

9 Using subroutine LSOPTN

The second method of setting the optional parameters is through a series of calls to the subroutine

LSOPTN provided with the LSSOL package. The specification of LSOPTN is

SUBROUTINE LSOPTN( STRING )
CHARACTER* (*) STRING

STRING must be a single valid option string (see above), and will be unchanged on exit. LSOPTN

" - must be called once for every optional parameter to be set. An example of a call to LSOPTN is

CALL LSOPTN( 'Print level = 5' )

e Use of the Nolist and Defaults option

In general, each user-specified optional parameter is printed as it is read or defined. By using the

special parameter Nolist, the user may suppress this printing for a given call of LSSOL. To take

effect, Nolist must be the first parameter specified in the options file; for example,

Nolist

Problem type LP
End .-.',

* Alternatively, the first call to LSOPTN, before or after a call to LSSOL, must be

CALL LSOPTN( 'Nolist' ).

All parameters not specified by the user are automatically set to their default values. Any
optional parameters that are set by the user are not altered by LSSOL, and hence changes to the

options are cumulative. For example, calling LSOPTN( 'Print level = 5' ) sets the print level
to 5 for all subsequent calls to LSSOL until it is reset by the user. The only exception to this
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rule is permitted by the special optional parameter Defaults, whose effect is to reset all optional
parameters to their default values. For example, in the following situation A F

CALL LSSOL ( ... )
C

CALL LSOPTN( 'Print level 5' )
CALL LSOPTN( 'Iteration limit = 100' )
CALL LSSOLC . )

C
CALL LSOPTN( 'Defaults' )
CALL LSSOL ( ... )

the first and last runs of LSSOL will occur with the default parameter settings, l)ut in the second
run, the print level and iteration limit are altered.

4.2. Description of the optional parameters

The following list (in alphabetical order) gives the valid options. For each option, we give the
keyword, any essential optional qualifiers, the (lefault value, and the definition. The mnminimum
abbreviation of each keyword is underlined. If no characters of an ol)tional qualifier are underlined,
the qualifer may be omitted. The letter a denotes a phrase (character string) that qualifies an
option. The letters i and r denote INTEGER and REAL values required with certain options. The
number F is a generic notation for machine precision.

Cold Start Default Cold Start
Warm Start

This option specifies how the initial working set is chosen. With a cold start, LSSOL chooses

the initial working set based on the values of the variables and constraints at the initial point.
Broadly speaking, the initial working set will include equality constraints and bounds or inequality
constraints that violate or "nearly" satisfy their bounds (to within Crash Tolerance; see below).

With a warm start, the user must provide a valid definition of every element of the array
ISTATE (see Section 3 for the definition of this array). LSSOL will override the users specification
of ISTATE if necessary, so that a poor choice of the working set will not cause a fatal error. A warm

start will be advantageous if a good estimate of the initial working set is available -for example,
when LSSOL is called repeatedly to solve related problems.

Crash Tolerance r Default = .01

This value is used in conjunction with the optional parameter Cold Start (the default value) when
LSSOL selects an initial working set. If 0 < r < 1, the initial working set will include bounds or
general inequality constraints that lie within r of their bounds. In particular, a constraint of the
form cT x > I will be included in the initial working set if IcTx - 11 r(l + Il). If r < 0 or r > 1,
the default value is used.

Feasibility Phase Iteration Limit Default = max(5,5(n- ))
Fptimality Phase Iteration Limit i2 Default = max(50,5(n + mL))

The scalars il and i2 specify the maximum number of iterations allowed in the feasibility and opti-
mality phases. Optimality Phase Iteration Limit is equivalent to Iteration Limit. Setting
il = and Print Level > 0 means that the workspace needed will be computed and printed, but
no iterations will be performed.

i!.. .. ., . . . . . . . . ... .. . . .. :
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Feasibility Tolerance r Default -

If r > 0, r defines the naximnum acceptable absolute violation in each constraint at a "feasible"

point; i.e., a constraint is considered satisfied if its violation does not exceed r. For example, if the .

variables and the coefficients in the general constraints are of order unity, and the latter arc correct

to about 6 dcenal digits, it would be appropriate to specify r as 10-6. If r < 0, the default value

is used.

Infinite Bound Size r Default - 101.

If r > 0, r defines the "infinite" bound BIGBND in the definition of the problem constraints. Any

upper bound greater than or equal to BIGBND will be regarded as plus infinity (and similarly for a

lower bound less than or equal to -BIGBND). If r < 0, the default value is used.

Infinite Step Size r Default = max(BIGBND, 1010)

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to

an unbounded solution. (Note that an unbounded solution can occur only when the Hessian is

singular and the objective contains an explicit linear term.) If the change in x during an iteration
would exceed the value of Infinite Step, the objective function is considered to be unbounded
below in the feasible region. If r < 0, the default value is used.

Iteration Limit i Default = nax(50, 5(n + rn))

Iters
Itns

See Feasibility Phase Iteration Limit above.

Optimality Phase Iteration Limit i Default = max(50,5(n + rn))

See Feasibility Phase Iteration Limit above.

. Print Level i Default = 10

The value of i controls the amount of printout produced by LSSOL, as indicated below. ..

i Output

0 No output.

1 The final solution only.

5 One line of output for each iteration (no printout of the final solution).

> 10 The final solution and one line of output for each iteration.

> 20 At each iteration, the Lagrange multipliers, the variables z, the constraint
values Cx and the constraint status.

> 30 At each iteration, the diagonal elements of the matrix T associated with the TQ
factorization (3) of the working set, and the diagonal elements of the triangular

matrix R.

Problem Type a Default = LSI

This option specifies the type of , !ctive function to be minimized during the optimality phase.

The following are the ten optional keywords and the dimensions of the arrays that must be specified

* S
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to define the objective function: m

FP A, B and CVEC not accessed;

LP A and B not accessed, CVEC(N);

QPI A(NROWA,N) symmetric, B and CVEC not referenced; -

QP2 A(NROWA,N) symmetric, B not referenced, CVEC(N);

QP3 A(NROWA,N) upper-trapezoidal, KX(N), B and CVEC not referenced;

QP4 A(NROWA,N) upper-trapezoidal, KX(N), B not referenced, CVEC(N);

LS1 A(NROWAN), B(M), CVEC not referenced; _

LS2 A(NROWA,N), B(M), CVEC(N);

LS3 A (NROWA, N) upper-trapezoidal, KX (N), B (), CVEC not referenced;

LS4 A (NROWA, N) upper-trapezoidal, KX (N), B (M), CVEC (N).

The options Least Squares and LSQ are equivalent to the default option LS1. The options
Linear program and Quadratic program are equivalent to LP and QP2 respectively. If A = 0, i.e.,
the objective function is purely linear, the efficiency of LSSOL may be increased by specifying a as "

LP (or Linear Program).

Rank Tolerance r Default =

If 0 < r < 1, r enables the user to control the estimation of the rank of A and the triangular factor
R, (see Section 2). If pi denotes the function pi = max{IRii I, R221,... IR 1ii}, the rank of R is
defined to be smallest index i such that lRi+1 ,i+ll r pi+. If r < 0 or r > 1, the default value is
used.

. 4.3. Optional parameter checklist and default values

- For easy reference, the following sample LSOPTN list shows all valid keywords and their default

values. The default options Feasibility Tolerance and Rank Tolerance depend upon C, the
relative precision of the machine being used. The values given here correspond to double precision
arithmetic on IBM 360 and 370 systems and their successors (4E 2.22 x 1016). Similar values
would apply to any machine having about 16 decimal digits of precision.

• List of optional parameters.

Cold Start •

Crash Tolerance .01 *

Feasibility Tolerance i.IE-8 * V/'E
Infinite Bound 1.0E+10 * Plus infinity
Infinite Step 1.0E+10 *

Feasibility Phase Iteration Limit 50 * or 5(n + m).
Optimality Phase Iteration Limit 50 * or 5(n + m,)
Print Level 10 * "
Problem Type Least squares * or LSi i .

Rank Tolerance 1.1E-8 *



5D CPO OTER T T T

5. DESCRIPTION OF THE PRINTED OUTPUT 17

5. DESCRIPTION OF THE PRINTED OUTPUT I .

This section describes the intermediate printout produced by LSSOL. To aid interpretation of the
printed results, we repeat the convention for numbering the constraints: indices I through N refer to

the bounds on the variables, and indices N + 1 through N + NCLIN refer to the general constraints. --

When the status of a constraint changes, the index of the constraint is printed, along with the
designation "L" (lower bound), "U" (upper bound), "E" (equality), "T" (temporary bound) or "Z"
(artificial constraint).

When Print Level > 5, the following line of output is produced at every iteration. In all
cases, the values of the quantities printed are those in effect on completion of the given iteration.

Itn is the iteration count.

Jdel is the index of the constraint deleted from the working set. If Jdel is zero, no
constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero, no

constraint was added.

Step is the step taken along the computed search direction. If a constraint is added
during the current iteration (i.e., Jadd is positive), Step will be the step to the
nearest constraint. During the optimality phase, the step can be greater than
one only if the factor R_ is singular.

Ninf is the number of violated constraints (infeasibilities). This number will be zero

during the optimality phase.

Sinf/Objective is the value of the current objective function. If X is not feasible, Sinf gives
a weighted sum of the magnitudes of constraint violations. If X is feasible,

Objective is the value of the objective function of LCLS. The output line for
the final iteration of the feasibility phase (i.e., the first iteration for which NINF
is zero) will give the value of the true objective at the first feasible point.

During the optimality phase, the value of the objective function will be non-
increasing. During the feasibility phase, the number of constraint infeasibilities
will not increase until either a feasible point is found, or the optimality of the

multipliers implies that no feasible point exists. Once optimal multipliers are
obtained, the number of infeasibilities can increase, but the sum of infeasi-
bilities will either remain constant or be reduced until the minimum sum of
infeasibilities is found.

Bnd is the number of simple bound constraints in the current working set.

Lin is the number of general linear constraints in the current working set.

NZ is the number of columns of Z (see Section 2). The value of Nz is the number

of variables minus the number of constraints in the working set; i.e., Nz =

N- (Bnd + Lin). A zero value of Nz implies that x lies at a vertex of the feasible

region.

Nzl is the number of columns of Z 1 (see Section 2). Nzl is the dimension of the
subspace in which the objective function is currently being minimized. If Nzl
is less than Nz, the current R, is singular.

Norm Gf is the Euclidean norm of the gradient of the objective function with respect to

the free variables, i.e., variables not currently held at a bound.

Norm Gzl is JlZT9g,.II, the Euclidean norm of the projected gradient with respect to Z1 .
During the optimality phase, this norm will be approximately zero after a unit
step.

. . .•-. . .

"°i- :- . .-::-.- - . . . " ' "X~ "-"-" - "
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Cond T is a lower bound on the condition number of the working set.

Cond Rzi is a lower bound on the condition number of the triangular factor R, (the first
Nzi rows and columns of the factor R. If the problem is specified to be of
type LP, or the estimated rank of the data matrix A is zero, Cond Rzt is not
p rin ted . , ,

When Print Level = 1 or Print Level > 10, the summary printout at the end of execution .
of LSSOL includes a listing of the status of every variable and constraint. Note that default names
are assigned to all variables and constraints.

The following describes the printout for each variable.

Variable gives the name (VARBL) and index j (j = 1 to N) of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if
a fixed variable, LL if on its lower bound, UL if on its upper bound). If Value
lies outside the upper or lower bounds by more than the feasibility tolerance,
State will be "++" or "--" respectively.

Value is the value of the variable at the final iteration.

I Lower bound is the lower bound specified for the variable. ("None" indicates that BL(j) <
-BIGBND.)

Upper bound is the upper bound specified for the variable. ("None" indicates that BU() >

BIGBND.)

Lagr multiplier is the value of the Lagrange multiplier for the associated bound constraint. This
will be zero if State is FR. If X is optimal, the multiplier should be non-negative 3 .
if State is LL, and non-positive if State is UL.

Residual is the difference between the variable "Value" and the nearer of its bounds
BL(j) and BU(j).

The meaning of the printout for general constraints is the same as that given above for vari-
ables, with "variable" replaced by "constraint", with the following change in the heading:

Linear constr is the name (LNCON) and index i (i= 1 to NCLIN) of the constraint.

-7

• °.. . * . . * . .A ."
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* 6. ERROR RECOVERY

Termination Recommended Action

Underlow A single underflow will always occur if machine constants are computed automat-
ically (as in the distributed version of LSSOL; see Section 7). Other floating-point
underflows may occur occasionally, but can usually ])e ignored.

Overflow If the printed output before the overflow error contains a warning al)out serious
ill-conditioning in the working set when adding the j-th constraint, it may be pos-

sil)le to avoid the difficulty by increasing the magnitude of the optional parameter
Feasibility Tolerance and rerunning the program. If the message recurs even
after this change, the offending linearly dependent constraint (with index "j") .-

must be removed from the problen If a warning message did not precede the
fatal overflow, contact the authors at Stanford University.

INFORM = 3 LSSOL has terminated without finding a feasible point, which means that no fea-

sil)le point exists for the given feasibility tolerance. The user should check that
there are no constraint redundancies. If the data for the constraints are accurate -

only to the absolute precision a, the user should ensure that the value of the op-
tional parameter Feasibility Tolerance is greater than a. For example, if all
elements of C are of order unity and are accurate only to three decilnal places, the
optional parameter Feasibility Tolerance should he at least 10-'.

INFORM = 4 The value of the optional parameter Iteration Limit may be too small. If the
method appears to be making progress (e.g., the objective function is being sat-

isfactorily reduced), increase the iterations limit and rerun LSSOL (possibly using
the warm start facility to specify the initial working set). If the iteration limit is
already large, but some of the constraints could be nearly linearly dependent, check

the output for a repeated pattern of constraints entering and leaving the working
set. (Near-dependencies are often indicated by wide variations in size in the di,-
agonal elements of the T matrix, which will be printed if Print Level > 30.) In
this case, the algorithm could be cycling (see the comments for INFORM = 5).

INFORM = 5 This value will occur if 50 iterations are performed without changing X. The user
should check the printed output for a repeated pattern of constraint deletions and
additions. If a sequence of constraint changes is being repeated, the iterates are
probably cycling. (LSSOL does not contain a inethod that is guaranteed to avoid
cycling; such a method would be combinatorial in nature.) Cycling may occur in

two circumstances: at a constrained stationary point where there are some small
or zero Lagrange multipliers; or at a point (usally a vertex) where the constraints
that are satisfied exactly are nearly linearly dependent. In the latter case, the user
has the option of identifying the offending dependent constraints and removing
them from the problem, or restarting the run with a larger value of the optional
paranmeter Feasibility Tolerance. If LSSOI, terminates with INFORM - 5, but
no suspicious pattern of constraint changes can be observed, it may bc worthwhile

to restart with the final X (with or without the warm start option).

.... .... .

. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .
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7. IMPLEMENTATION INFORMATION

I 7.1. Format of Ole (listriblltion- tape
* ~The s )urcc code and~ exampl~e program for LSS()L are distributed oni a inagnetic t ape containing 7
* ~~files. 'I'lle t ape cliaract eristies are' described iii a docuiment accomlipanmying thme t pe; norinally thmey

ar ack, 1600) bpi, uunlaeled, ACI,8-character records (card i mmages), . .8(H-char-acter blocks.
* ~~The folloinig is a list of the files and a suto mmary of their contecuts. For reference purposes we

give a namte to eac.h fle.i However, time tiames will nott lbe recordledl Imiilabeled tapes. The MACH
* and LSCODE files are composed of several smaller source files dlescrib~ed in Section 7.3. '

*File Naine Type Cardst Description

1. DPMACH FORTRAN 450 Double- precision source file 1: MCSUBS -I2. DPLSCODE FORTRAN 8250 Double-precision source files 2 -5: BLAS,- .. , OPSUBS
3. DPLSMAIN FORTRAN 260 Douible-precision source file LSMAIN
4. LSMAIN DATA 6 Options file for LSMAIN
5. SPMACH FORTRAN '450 Si ngle- precision source file 1
6. SPLSCODE FORTRAN 8250 Single-precision source files 2 5
7. SPLSMAIN FORTRAN 260 Single-precision version of file 3

t Approximate figure.

One MACH and one LSCODE file should be selected for any given installation. DPMACH and
DPLSCODE are intended for machines that generally require double p~recision computation. Examples
include IBM Systems 360, 370. 3033, 3081, etc.; Aindahl 4170, Faconi, Fujitsu, Hitachi, and other O

PRtIM systems; DEC Systems 10 and 20; Honeywell systems; and the Univac 1100 series.

SPMACH and SPLSCODE are intended for machines for which single precision is suitably accurate
for munmerical computation. Examples include the Burroughs 6700 and 7700 series; the CDC 6000
andl 70010 series and their Cyber counterparts; and the Cray-i.P

7.2. Installation procedure

I . Obtain the appropriate MACH and LSCODE files from the tape.
2. If necessary, edhit the sub~routine MCHPAR according to Section 7.5.

*3. Decide whether or not to split the LSCODE file into files BLAS through OPSUBS as suggested inL
Section 7.3.

4. Compile all the routines that were originally in the LSCODE files together with those froin MACH.
Run them in conjunction with the main program LSMAIN from either File 3 or File 7 and the
options given lin file LSMAIN DATA. Check the output against that shown in Section 8.

*7.3. Source files

'~Of, has been written in ANSI (1977) Fortran and tested onl an IBM 3081K computer using the
113N Fort ran 77 cozmpiler VS Fortran. Certain unavoidable machine dependencieis are confined to
the routine MCHPAR.

The source code is dlivided into 5 logical p~arts. For ease of handling, these are comb~inedl into
the tTACH and LSCODE files oi the distribution tape, but for sublsequent nijtemmance we recommend
that 5 separate files be kept. In the dIescrip~tion below we suggest~ a namne for each file and summarize
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its puirpose. We then list the names of the Fortran sulbroutjnies an(1 functions involved. The naming

convention used should minimize the risk of a clash with user-written routines.

File 1. MCSUBS Comnpuiites ruachine-dep en dent constants.

MCHPAR MCEPS MCENVI MCENV2 MCSTQR

File 2. BLAS Basic Linear Algebra Subprograms (a subset).

DASUM DAXPY DCOPY DDOT DNRM2 DSWAP DSCAL IDAMAX

These routines arc functionally similar to members of the BLAS package (Lawson et a].,
-. 1979). If possible they should be replacedl by authentic BLAS routines. Versions may

eittat have been tuned to your particulrmcie

DGEMV DGERI

These routines are functionally similar to members of the Level 2 BLAS packages (Don-

garra et a)., 1985).

DCOND DDIV DDSCL DLOAD DNORM DSSQ DSWAP ICOPY -

IDRANK RLOAD

These are additional utility routines that could be tuned to your machine. DLOAD is used

* *the most frequently, to load a vector with a constant value.

*DROT3 DROT3G DGEAPQ DGEQR DGEQRP DGRFG

These linear algebra routines are used to compute and update various matrix factoriza-

tions in LSSOL.

*File 3. CMSUBS General utility routines.

CMALF CMALF1 CMCHK CMFEAS CMPRT CMQMUL CMRSOL CMRSWP

CMR1MD CMTSOL

*File 4. LSSUBS Least-squares routines.

LSADD LSADDS LSBNDS LSCHOL LSCORE LSCRSH LSDEL LSDFLT

*LSFEAS LSFILE LSGETP LSGSET LSKEY LSLOC LSMOVE LSMULS

LSOPTN LSPRT LSSETX LSSOL

File 5. OPSUBS Option string handling routines.

OPFILE OPLOOI( OPNUM OPSCAN OPTOKN OPUPPR

7.4. Common blocks

Certain Fortran COMMON blocks are used in the LSSOL soumrce code to communicate between sub-
routines. Their names are listed below.

CMDEBG LSDEBG LSPAR1 LSPAR2 SOLICH SOL3CM SOL4CM SOLSCM
SOL6CM SOLMCH SOUiLS SOU3LS

7.5. Machine-dependent subroutines

The routine MCHPAR in the MACH file may require modification to stit a particular machine or a
non-standard application.
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At ti' beginnintg, of LSSOL, MCHPAR is (alled to assign the n~lahine-del)eiiet constants and .-
the standard input ad output unit numbers. These parameters are stored in the array WMACH(15)
in the hLbeled COMMON Ilock SOLMCH, and are defined as follows.

WMACH(1) is NBASE, the base of floating-point arithmetic.

WMACH(2) is NDIGIT, the number of NBASE digits of precision.

WMACH(3) is EPS, the floating-point precision.

WMACH(4) is RTEPS, the square root of EPSMCH.

WMACH(5) is RMIN, the smallest positive floating-point number.

WMACH(6) is RTMIN, the square root of RMIN.

WMACH(7) is RMAX, the largest positive floating-point number.

WMACH(8) is RTMAX, the square root of RMAX.

WMACH(10) is NI, the file number for the input stream.

WMACH(10) is NOUT, the file number for the output streani.

Within routine MCHPAR, the machine constants are set one of two ways, depending upon the
value of the logical variable HDWIRE, which is set in-line.

If HDWIRE is .FALSE. (the value set for the distributed copy of MCHPAR), the machine constants
are comiputed automatically for the machine being used. If HDWIRE is . TRUE., machine constants
appropriate for the IBM 360 Series are assigned directly to the elements of WMACH.

Before selecting the method of assigning the machine constants, you should note the following.
'Ihe comiputation of the machine constants will always generate a single arithmetic underflow, and
lihnce some appropriate remedial action may need to be taken if your machine traps underflow.

If you wish to implement the in-line assignment of machine constants for a machine other than
one from the IBM 360/370 Series, MCHPAR must be modified as follows.

1. Change the in-line assignment of HDWIRE from .FALSE. to .TRUE..

2. Set the values of WMACH appropriate for the machine and precision being used. The values of P
NBASE. NDIGIT. EPSMCH, RMIN and RMAX for several machines are given in the following table,
for both single and double precision; RTEPS, RTMIN and RTMAX may be computed using Fortran

statements. The values NIN and NOUT depend on the machine installation.
For each precision, we give two values for EPSMCH, RMIN and RMAX. The first value is a For-
tran decimal approximation of the exact quantity; use of this value in MCHPAR should cause
no difficulty except in extreme circumstances. The second value is the exact mathematical
representation.

.o"
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Table of machine-dependent parameters

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax

Single Single Single Single Single

"% NBASE 16 2 2 2 2

NDIGIT 6 48 27 27 24 W
EPS 9.54E-7 7.11E-15 7.46E-9 1.60E-8 1.20E-7

16- 5 2 - 4 7  2-27 226 2 -23

RMIN 1.OE-78 1. OE-293 1.OE-38 I.OE-38 1.OE-38

16-65 2-975 2-129 2-129 2-128

RMAX 1. OE+75 1.OE+322 1. OE+38 1.OE+38 1.OE+38
1663(1_16-6) 21070(12-48) 2127(i_2-2) 2127(12-27) 2127(12 -24)

IBM 360/370 CDC 6000/7000 DEC 10/20 Univac 1100 DEC Vax

Double Double Double Double Double

NBASE 16 2 2 2 2

_ NDIGIT 14 96 62 61 56

S EPS 2.22D-16 2.53D-29 2.17D-19 8. 68D-19 2.78D-17
16-13 2- 262 2-60

RMIN 1.OD-78 1.0D-293 1.0D-38 1.0D-308 1.0D-38

16-65 2- 9 7 5  2 - 129 2-1025 2-128

RMAX 1.0D+75 1.0D+322 1.10D+38 1.0D+307 1.0D+38

1663(1-16-14) 21oo(1- 96) 27 (162-2) 2302 (1-2-61) 2127(1 2-56)

6---

o°... . . .. . . . •0~*
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8. EXAMPLE PROBLEMS

This section describes a linear least-squares problem and a quadratic program; the sample main

program LSMAIN that calls LSSOL and the output are given in the Appendix.
The first problem is a constrained least-squares problem of type LS1 with nine variables and

three general linear constraints. The least-squares matrix and vector of observations are given by

1 1 1 1 1 1 1 1 1 1 -:

1 2 1 1 1 1 2 0 0 1

1 1 3 1 1 1 -1 -1 -31

1 1 1 4 1 1 1 1 1 1

A- 1 1 1 3 1 1 1 1 1 and b =
1 1 2 1 1 0 0 0 -1

1 1 1 1 0 1 1 1 11

1 1 1 0 1 1 1 1 1

1 1 0 1 1 1 2 2 3 "

1 0 1 1 1 1 0 2 2 1

The least-squares matrix has rank 6. Let I in LCLS be partitioned into two sections: the first n
components (denoted by 1,), corresponding to the bound constraints; and the last mL components
(denoted by 1 L), corresponding to the linear constraints. The vector u is partitioned in a similar .-
fashion. Using this notation, the upper and lower bounds on the variables are given by

t. = (-2, -2, -00, -2, -2, -2, -2, -2, - 2 )7 :

U=( 2, 2, 2, 2, 2, 2, 2, 2, 2 )T.

.- and the general constraints are given by

1 1 1 1 1 1 4)

, -00 C 1 2 3 4 -2 1 1 1 1 and uL= •
i-4 1-1 1 -1 1 1 1 1 1 --2

The starting point zo is

o= (.1, .5, .3333, .25, .2, .1667, .1428, .125, .1111 )T )

and F(xo)= 9.4746 (to five figures). The optimal solution (to five figures) is

= (2.0000, 1.5719, -1.4454, -. 037003, .546685, .17512, -1.6567, -. 39477, .31002 )T,

and F(x*) = 1.390587. All three general linear constraints are satisfied exactly at X* The Lagrange
multiplier associated with the third general constraint is of the order of the machine precision, and
therefore the point a* is a weak minimum, i.e., the optimal objective function is unique, but is

"" achieved for infinitely many values of z.
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The second problem is a quadratic programming problem of type QP2 with a semi-definite

Hessian matrix and linear term given by

2 1 1 1 1 0 0 0 0 -4

1 2 1 1 1 0 0 0 0 -1

- 1 1 2 1 0 0 0 0 -
A 1 1 1 1 2 0 0 0 0 and c -1

0 0 0 0 0 0 0 0 0 -1
o o 0 0 0 0 0 0 0 -.

0 0 0 0 0 0 0 0 0 -. 1

0 0 0 0 0 0 0 0 0 -. 3

(Note that by setting M = 5, we need not assign the last four rows and colunis of A to zero.)
-. The upper and lower bounds on the variables are given by

1t (-2, -2, -2, -2, -2, -2, -2, -2, -2)T

u=( 2, 2, 2, 2, 2, 2, 2, 2, 2 )T.

and the general constraints are given by

L2) ft = 1 2 3 4 -2 1 1 1 1 and UL=(1.5)-

-" 1 -1 1 -1 1 1 1 1 1 4

The starting point z0 is the zero vector, at which F(xo) = 0. The optimal solution (to five figures)
P is

-- = (2.0, -. 23333, -. 26667, -. 3, -. 1, 2.0, 2.0, -1.7777, -. 45555 )T.

•. and F(z*) -8.067778. The first two linear constraints are satisfied exactly at the solution, as are
. the upper bounds on variables XI, z 6 and x7 . Note that, although the Hessian matrix is positive

seni-definite, the point x is unique.

.. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. _ .
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APPENDIX. SAMPLE PROGRAM AND OUTPUT

2 FILE LSMAIN FORTRAN
3* *

4 Sample program for Version 1.0 January 1986.5 4*4*4+++4+++++++++++4,,++++++++++,++4+ +,4+4,+,,,,,,,s,,+

6
7 IMPLICIT DOUBLE PRECISION(A-HPO-Z)

9 * Set the declared array dimensions.
10 * NOWC = the declared row dimension of C.
11 * NROWA = the declared row dimension of A.
12 * IAXN = maximum no. of variables allowed for.
13 * tAXM = maximum no. of observations allowed for.
14 * MAXBHO = maximum no. of variables + linear constraints.
15 * LIWORK = the le.gth of the integer work array.
16 * LWORK = the length of the double precision work array.

18 PARAMETER (NROWC = 3, NROIA = tO,
19 $ IIAXN = 9* MAXM = 10P
20 $ LIWORK = 60, LWORK = 900,
21 $ MAXB11 = MAXN + KROWC )

23 INTEGER KX(t AXN), ISTATE(MAXBND)
24 INTEGER IVIORK(LIWORK)
.5 DOUBLE PRECISION C(NROWC,MAXN)s B(IAXII)
26 DOUBLE PRECISION BL(MAXBND) BU(MAXBD), CLAMDA(MAXBJI)"
7 DOUSLE PRECISION CVEC(MAXH)

S Oto LE PRECISION A(NROIWA,dAXN)p X(tAXN)
29 DOUBLE PRECISION WORK(LWORK)

31 DOUBLE PRECISION BIGBND
31 Clt;JACTERI0 CBGStO.
33 " ' '

34 INrRIns5C FLOAT
3536 PARAMETER I POINTI=Oo.D40, POINT3=0.30 0, ONEPTS=I.SDO )_

37 PARAMETER ( ZERO =0.00+0, ONE =1.00+0, TNO =2.0040 )
33 PARAMETER ( THREE =3.00+0, FOUR =4.0D+0, FIVE :5.0040 ) --
39 F') AIETER ( SIX =6.00+0

41 BIGENO0 z 1.00+15

4Z C,;BND = '1.00+15
'

-
43
44 *
45 * Exa..p!e 1. A linear least-squares problem.
46 *
47 * Set the actual problem dimensions.
48 * M = the nu';bor of observations (rows of A) (may be 0).
49 * N = the number of variables.

50 * NCLIN = the number of general linear constraints (way be 0).
5I
52 M = 10
53 N = 9
54 NCLIN = 3
55 N O?0 = N 

+ 
NCLlN

. ..-..

.. . .." ... .. .. .. .. ... .. .. .. . .... . . .. ... .. I
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N ,..-

56 .

,8 * Assign file numbers and problem data.
e, 59 * HOU7T = the unit number for printing.

60 * IOPTNS = the unit number for reading the options file. ., *'

61 * A = the least-squares matrix.
62 * B = the vector of observations.
63 * C = the general constraint matrix.
64 * BL = the lower bounds on x and C*x.
65 * BU = the upper bounds on x and CLx.
66 * X = the initial estimate of the solution.
67 * -----------------------------------------------------------------
68 IOPTNS = 5
69 NOUT = 6
70 -
71 DO 120 J = 1, N
72 00 110 1 I, M
73 A(I,J) ONE
74 B(I) ONE
75 110 CONTINUE
76 120 CONTINUE

'a 77
78 A(2 2) = TWO
79 A(1O,Z) ZERO
80
81 A(3,3) = THREE
82 A(6,3) = TWO
83 A(9,3) = ZEPO

* £4
85 A(4,4) FOUR
C6 A(5,4) TYREE
87 A(8,4) ZERO
88 .-
89 A17,5) = ZERO %"

90 ''
91 A(6,6) = ZERO , a"

* 92 ~
93 A(2 ,71 = TO .

94 A(3 ,7) =- 011E
95 A(6 ,7) = ZERO 1
96 A(9 ,7) = TWO
97 A(10,7) = ZERO
98
99 A( ,8) = ZERO
100 A(3 ,8) =- ONE
101 A(6 ,8) = ZERO
102 A(9 ,8) = TWO
103 Af 10,8) = TWO
104 "
105 A(, ,9) = ZERO
106 A(3 ,9) =- THPEE
107 A(6 9) - OE
108 A(9 ,9) = THREE
109 A(10,9) = T1,"
11o

•'°

U °

"" ;:-



I ,...APPENDIX. SAMPLE PROGRAM AND OUTPUT 9 ..

I 111II DO 140 J = 1, N "..'

"" 11Z no 130 1 1, NCLIN %'

11 3 C(I,J= ONE 1.
I ; 4 130 CONTINUE

115 140 CONTINUE

117 C(1.9) = FOUR

Ap 119 C(ZtZ) TWO.
120 C(2,31 THREE
121 C(2,4) = FOUR
122 C(2,5= - TVO
123
124 C(3,2) =- ONE
"25 C(3,4) = - ONE

126
127 00 150 J = it N

128 DL(J) = - TWO'
1: 9 BU(Ji = TWO
130 150 CCT INUE
131 BL( 3) - BIGB,,
1 32
133 Set the ranges for the general constraints.

j 134
135 BL(H+I) = TWO

136 PU(N+I) = BIGB"-
137 EL(N+Z) = - BIGBND
138 BU(N+2) =- TWO
1•9 BL(N+3) = - FOUR
140 BU(N+3) = - TWO141

142 DO 170 J I, N
143 X(J) = ONE / FLOATIJ)
t44 170 CONTINUJE
145
146

"-'.147 * ------------------------------------------------------------------ "'"

148 * Read the options file.
149 * Add a single option using a call to LSOPTH.

150 * ------------------------------------------------------------------
151
152 CALL LSFILE( IOi'TN5, INFORM
153 IF (INF0-7M .NE. 0) THEN
154 WRITE (NOUT, 3000) INFORM
155 STO? . -

156 END IF
157
153 CALL LSCTN( 'Infinite Bound size :'//CBGBND

-159

160 * ------------------------------------------------------------------
161 * Solve the problem.
16 2 * ...................................................................
162*.".
163
164 CALL LSSOL M , N,

. 165 $ NCLIIJ, NRCWC, NOWA,

%.

S.".'
S * ~------
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166 $ C, BL, BU, CVEC, ur
167 $ ISTATE, KX, XP A, B,
16, $ IMFCRtl. ITER, OBJ, CLArIDA,
169 $ IWORK, LII,0ZK, W'ORK, L1ORK ,
170
171 * Test for an error condition. ,
172
173 IF (INFORMI GT. 1) GO TO 999
174
175 *
176 * Example 2. A QP with Hessian bordered by zeros.
177 * -

178 * Set the nzw problem dimensions.
179* I = the nu ber of rows (and columns) of A (may be 0).
180 * N = the number of variables.
181 * NCLIN = the number of scneral linear constraints (may be 0).
182 * CVEC = the linear part of the objective function.
183
184 M .
185 N 9
185 tJCLIN = 3
187 NBO = N + NCLIN
18~3
189 DO 220 J = 1, M
190 DO 210 I - 1, = -i
191 A(IJ) ONE
192 210 CONTINUE

*193 220 CONTIXUE
194
195 DO 230 I 1, M.
195 A(I,I) TWO
197 230 CONTIVJE
198
199 DO 260 J 1, I
4.... L(J) : - TWO
^.01 BU(J) TWO
2C2 260 CONTINUE
Z03 .
104 BL(N+1) - T1,'O
205 BU(H+I) = ONEPTS
206 BL(H+2) =- T1WO
207 BU(N+2) Of;EPTS
"08 BL(N+3) - TWO
209 BU(N*3) FOUR
210
211 DO 270 J= 1, N
21Z CVEC(J) - ONE
213 270 CONTINUE
214 CVEC() = - FOUR ,.
215 CVEC(8) = - POINTI
216 CVEC(9) = - POINT3
217
218 Do 280 J - 1, N
219 X(J) ZERO
220 280 CONTINUE

. .
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* 221 I

222
223 * ----------------------------------------------------------------.-
-24 * Assign some new options.(.z~~22 * ------------------------------------------------------------------ !'" '"

226
227 CALL LSOPTH( 'Defaults I
228 CALL LSOPT4( 'Problem type QP' )

F' Z29 CALL LSOPTN( 'Rank tolerance = I.OE-101 I
230 CALL LSOPTn( Feasibility tolerance= 1.0E-10 .;.

* '231

233 * Solve the QP problem.

235
235 CALL LSSOL ( M, N,
237 $ HCLIH, IROt4C, KRONA, "i
238 S C, BL, BU, CVEC,
239 $ ISTATE, KX, X, A, 5,
240 $ INFORtM, ITER, OBJ, CLAMOA,'
241 $ IW.OK, LIWORK, WORK, LWORK
24Z
243 * Test for an error condition.
2;4
Z45 IF (INFORM .GT. 1) GO TO 999
'46 STOP
247
248 * Error condition.
249
Z50 999 WRITE (NOUT, 30103 INFORM
251 STOP

253 3000 FORMAT(/ ' LSFILE terminated with INFORM =I, 13)
254 3010 FORMAT(/ * LSSOL terminated with INFORM , 13)

2156 * End of the example program for LSSOL.
257
258 ENDO

%-..

,o" . ' o

, ,
° :
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BEGIN~ Option for LSSOL 1.0 Sample problem.

Iterations iita t
Problem Tyea Las qae

End

Calls to LSOPTH

Infinite Bound size uI.0D+i5

SOL./LSSOL -- Version 1.0 Feb 1986

Parameters

Problem type ................ LSI
Linear constraints ... 3 Feasibility tolerance 1.49E-08 COLD start .....

*Variables .................... 9 Infinite bounad sie .0.OE+i5 Crash tolerance.:::::::....00E-02
6Objective matrix ros. 10 Infinite step size .. .00E*15 Raa* tolerance ............. 49E-08

*EPS (machine precision) 2.22E-16 Feasibility phase Ituis. 60 Print level ................. 10
Optimality phase itris. 25

W borkspace provided Is 11,11 60), 111 900).
To solve problem me nedIM 9)w M( 2613.

Rank of the objective function data matrix a 6

Itn Jdel Jadd Step HIMf Sinf/Objective WWi Lin Nz Hz1 Norm Sf Norm GzI Cond T Cond RzI

0 0 0 .E*0O 2 9:474603E-00 0 0 9 0 6.86E*00 0.00E+00 I.0E+O0 O.DE
4
00p

2 IZ IIU 4.iE..O I 4.990079E*00 0 2 7 0 3.OOE*00 0.00E+00 I.IE+00 0.0E*00
3 IZ 101 3.7E+00 0 4.95794E+01 0 I 6 0 6.6E40I 4.13E+01 2.0E+00 2.2E*01

S 0 0 I.0E400 0 1.390587E-01 1 3 S 5 6.SSE-Oi i.59E-I5 2.4E*00 4.8E+00

Exit from LS problem after S Iterations. INFORM u 1

Variable State Value Lmor bo - up IUpper bowai Lar multiplier Residual

*:ArPL I UL 2.000000 -2.000000 2.000000 -0.119t932 0.0000E+00
VAFBL 2 FR 1.S7i9S9 -2.000000 2.000000 0.OOOOOOOE400 0.4280
VARBI 3 FR -1.44e5403 None 2.000000 0.^'11000E+00 3.445

WE
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VAPBL 4 FR -0.370027SE-01 -2.000000 2.000000 0.0000000E+0O 1.963
\AL 5 FR 0.5466858 -2.000000 2.000000 0.00000000 1.453
V-'rIL 6 FR 0.1751236 -2.000000 2.000000 0.0000000E400 1.825
VAPaL 7 FR -1.656704 -2.000000 2.000000 0.0000000E*00 0.3433

V.YD3L 8 FR -0.3947742 -2.000000 2.000000 0.0000000E400 1.605.P.VAROL 9 FR 0.3t00290 -2.000000 2.000000 0.0000000E+00 1.690

Linear constr State Value Lamer bounad Up~per bounid Lagr mnultiplier Residual

LtIOt4 I LL 2.000000 2.000000 None 0.3973107E-01 -0.3553E-14
UI1COI 2 UL -2.000000 Norm -2.000000 -0.1191932 -0.4219E-14
LtItCtN 3 UL -2.000000 -4.000000 -2.000000 0.2006660E-15 -0.4441E-15

Exit LSSOL -Weak LS solution.

Final LS objective value a 0.1390587

calls to LSOPTN

Defaults
Problem type QP2
Pank tolerance = I.OE-I0
Fcasibility tolerance w .02-10

SOL/LSSO. --- Version 1.0 Feb 1966

Paraeters

Problem type.......... QP2
*Linc.)r corr iraints .. 3 Feasibility tolerance I.002-10 COLD start ..........

'1..r i..blcs .................... 9 Infinite bound size. 1.002410 Crash tolerance..::::::....OOE-02
G:)tective matrix rws. 5 Infinite step size... I.002410 Rank tolerance ........... I.OOE-10

EP5 lisochine precision) 2.22E-16 Feasibility phase ltns. 60 Print level ................. 10
Optimality phase itns. 60

Workspace provided to IWI 60)t IIt 900).
To solve problem m~e nee IW( 9)R W( 270).

Rank of the objective function data matrix =

Tin Jdel Jadd Step Ninf Sinf/Objectlve Ond Lin Nz HI Norm Gf Norm Gzi Cond T Cond Rzl
0 0 0 0.02400 0 0.0000002400 0 0 9 S 4.70E*00 4.47E+00 2.42400 1.3E*00
1 0 WU 7.5E-01 0 -4.3750002400 1 0 8 4 1.53E+00 5.002-01 2.4E+00 1.3E400
2 0 0 I.OE*00 0 -4.4000002400 1 0 8 4 1.452400 3.67E-17 2.42400 1.32400 .-

*3 5Z IOU 3.02-01 0 -4.7000002400 1 I 7 4 1.45E+00 8.94E-01 I.OE*00 1.02400
*4 0 0 I.OE'00 0 -S.1000002400 1 1 7 4 2.47E+00 1.202-17 1.01400 I.0E+00

5 7Z 12U 5.42-01 -6.05120 1 2 6 4 72400 173E+00 2.024001.20
6 6 .12-0 0 -6.1133 6E40 2 2 5 3 2 2-4 1642400 2 0E4 00 17240
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7 0 11U I.IE-Oi 0 -6.215049E*00 2 3 4 2 2.03E400 1.18E+00 2.1E
4
00 1.5E*00

a 0 0 1.0E400 0 -6.5380082400 2 3 4 2 1.10E*00 2.22E-i6 2.1E400 I.SE400

9 3z 0 1.0E+00 0 -6.5673732400 2 3 4 3 1.07E*00 2.23E-16 2.1E+0O 2.7E+00 -

10 4Z 7U l.7E*00 0 -8.055612E+00 3 3 3 3 3.83E-01 2.82E-01 2.IE+00 3.720
11 0 0 1.0E*00 0 -8.067718E+00 3 3 3 3 4.38E-01 1.05E-16 Z.12400 3.7E+00 ,

*12 12U. 0 1.0E+00 0 -8.067778E*00 3 J! 4 4 4.31E-01 t.05E-t6 1.2E+00 5.82400

Exit from OP problem after 12 Iterations. INFORMI 0 F4

*Variable State Value Lowier bounad Upper bounad Lagr multiplier Residual

VAROL i UL 2.000000 -2.000000 2.000000 -0.8000000 0.0000E*00
VAPOL 2 FR -0.2333333 -2.000000 2.000000 0.0000000E400 1.767
VARBL 3 FR -0.2666667 -2.000000 2.000000 0.0000000E+00 1.733
VAROL 4 FR -0.30:0::000 -2.:0000 2.000000 :0:0100E-0: i.700

VAR3L 5 FR -0.toO0 '0 -2.000 2.0 000 000000020 1 .900
VAROL 6 UL 2.000000 -2.000000 2.000000 -0.9000000 0.00002400

*VARDL 7 UL 2.000000 -2.000000 2.000000 -0.9000000 0.0000E+00
VARDL 8 FR -1.777778 -2.000000 2.000000 0.0000000E#00 0.2222

VAPBL 9 FR -0.4555556 -2.000000 2.000000 0.0000000E+00 I.544

Linear constr State Value Lower boud Upper bounmd Lagr multiplier Residual

LIXON I UL 1.500000 -2.000000 1.500000 -0.6666667E-01 -0.3553E-14.
*LIXON 2 UL 1.500000 -2.000000 1.500000 -0.3333333E-01 0.2220E-15

LNCOH 3 FR 3.933333 -2.000000 4.000000 0.0000000E+00 0.6667E-01

Exit LSSOL -Optimal OP solution.

Final OP objective value -8.067778

I L1P7
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INDEX Diagonals
of R, printout, 15.

A (oljective data matrix), 1. of T, printout, 15.

estimated rank of, 4, 16, 18. Distribution tape, format of, 20.
identically zero, 16 (also see Linear program). DOUBLE, 7.

A, 9 (definition). Double precision

Algorithm of LSSOL, description, 2-6. table of machine constants, 23.
a (step length), 2, 4 version of code, 20.

printed value, 17.
aMf (step to nearest constraint), 5. E (printed constraint designation), 17.
Amdahl 470, 20. End (in options file), 12 13.

ANSI (1977) Fortran, 1, 20. EPS, 22 (also see t).
Artificial constraint, 4 5 (definition), 17. c (machine precision), 14, 22.
Artificial multiplier, 5. EQ (printed constraint status), 18, 22.
ASCII, 20. Equality constraint, 1, 8, 17, 18. - -

Error correction procedures, 19.
b (vector of observations), 1. Estimated rank
B. 9 10 (definition). of A, 4, 16, 18 (also see Rank Tolerance).
Begin (in options file), 12-13. of R1 , 16 (also see Rank Tolerance). ..-

BIGBIJD, 15 (also see Infinite Bound Size). Example I (a least-squares pt;oblem), 24.
BL, 7 8 (definition). Example 2 (a quadratic progtarm), 25.
BLAS, 21. Example problems, 24-25.

Level 2, 21. Explicit linear term in objective function, 1, 10.
Bnd, 2, 17. External file, use for option specification, 12-13. - -

BU. 8 (definition).
Burroighs 6600 and 7600, 20. f (transformed residual), 3, 4.

F (objective function), 1.
C (general constraint matrix), 1. Facom, 20.

in exaniples, 24-25. Feasibility phase, 2, 4, 8, 17, 19.
CFR, 

2 , 3. Feasibility Phase Iteration Limit, 10, 14 (defi-
CFX, 3. nition).
C, 7 (definition). Feasibility Tolerance, 2, 5, 8, 15 (definition),
CDC 6000 and 7000, 20. 19.

Checklist of optional parameters, 16. adjustment to avoid overflow,'19.
Cholesky factor, 3, 4, 9, 15. Feasible point, 15 (definition).

printout cf diagonals, 15. Feasible-point problem, I (also see FP).
CLAt.DA, 10 (definition). Final solution, printout, 15. "

Cold Start, 8, 14 (definition). Fixed variables, 2 (also see EQ).
Column interchanges, 4 (also see Rank). Formal parameters of LSSOL, 7-10.
Comnent (in optional parameter specification), Formal specification of LSSOL, 7.

12. Format of distribution tape, 20.
Common blocks, list of, 21. Fortran
Cond Rzt, 5, 18. ANSI (1077), 20.
Cond T, 5, 18. subroutines, naming convention, 21.
Condition estimator FP (problem type), 1, 7, 8, 16.

for R 1, 5, 18. FR (printed constraint status), 18.
for T, 5, 18. Free variables, 2.

Condition of working set, control of, 5-6. Fujitsu, 20.
('onstrained stationary point, 3.
Constraint status indicator (see ISTATE). Gabor, Zsa Zsa, 19.
Constraint violations, weighted sum of, 17. General constraints, 1, 18.
Convexity, 2. Global minimum, 1.
Crash Tolerance, 14 (definition).
Cray-1, 20. H (Hessian matrix), 1.
CVEC, 8 (definition). HDWIRE, 22.
Cyber, 20. Hessian matrix, 1, 4.
Cycling, 10, 10. senti-definite example, 25.

upper-triangular factor, 3, 4, 9.
Data General MV/8000, 20. Hitachi, 20.
Data matrix (see A and k). Honeywell, 20.
)EC Systems 10 and 20, 20.
DEC VAX. 20. IBM
Default values of optional parameters, checklist 360/370 and 3033/3081, 16, 20, 22.

of, 16. VS Fortran, 20.

4-.-'- .. -.. -. --. . .. .. --. -,



36 User's Guide for LSSOL 1.0

WIL 2900, 20. LSOPTN, 13.
Ilniplenintation information, 20-23. list, sample, 16.
Infeasible )roblem, 3 4, 10, 17, 19. LSQ (sec LSO). .
lnfasjiilities, weighted sum, 17. LSSOL
Infinite lower or upper bound, 1, 8. algorithm of, 2-6.
Infinite Bound Size, 8, 10, 15 (definition). lines of code in, 1, 20.
Infinite Step Size, 15 (definition). parameters of, 7-11.
INFORM, 10 (definition). specification of, 7.
huitial working set, 5, 6, 8 (also see Cold Start

and Warm Start). m, 1.
Input parameter, invalid, 10. mL (number of general constraints), 1, 2, 5, 24.
Installation procedure, 20. mw (number of general constraints in working
Invalid input paraeter, 10. set), 2.
IOPTNS (options file number), 12-13. M, 7 (definition).
ISTATE, 8 9 (definition), 14, 18. Machine constants Z

printout, 15. computation of, 21.
ITER, 10 (definition). tables of, 22.
Iteration Limit, 15 (definition), 10. Machine dependencies in code, 21-23.
Iters (see Iteration Limit). Machine precision (see c).
Itn (printed value), 17. Matrix factorizations, routines for updating, 21.
Itns (see Iteration Limit). MCHPAR, 22 (also see Machine constants).
IW, 10 (definition). Method of LSSOL, description, 2-6.

Minimal sum of infeasibilities, 4, 17, 19.
Jadd (printed value), 4, 17. Minimum abbreviation (of optional parameter),
Jdel (printed value), 4, 17. 14.

Keyword in option specification, 12. n (number of variables), 1.
KX, 2, 0 (definition), 16. nFR (number of free variables), 2.

nvx (number of fixed variables), 2.
f (lower bound vector), 1, 8 (also see BL). nz, 3, 5, 17.
t,, 24. N, 7 (definition).
ti, 24. Nmuning convention for Fortran subroutines, 21.
L (printed constraint designation), 17 (also see NBASE, 22.

BL). NCLIN, 7 (definition) (also see mL).
Lagr multiplier (printed value), 18. NDIGIT, 22.
Lagrange multiplier, 3, 10, 15, 18, 19, 24. Negative steps, 6 (also see a).

optimal, 3-4, 10, 18. NIN, 22.
zero or small, 19. Ninf (number of infeasibilities), 17.

LCLS (problem statement), 1. No feasible point, 4, 10, 17, 19.
Least Squares (see LSI). Nolist option, 13.
Least-squiares matrix, 1, 9 (also see A and A). Non-existent lower or upper bound, 8.
Least-squares problem, 1. None (in printout), 18.

example. 24. Nonlinearly constrained optimization, 6.
LENIW, 11 (definition). NOUT, 22.
LENW, Ii (definition). Norm Cf. 3, 17 (also see Projected gradient).
Level 2 BLAS, 21. Norm Gzt, 5, 17 (also see Projected gradient).
Lin (printed value), 2, 17. NPSOL, 6.
Linear constr, 18. NROWA, 7 (definition).
Linear least-squares problem, 1. NROWC, 7 (definition).
Linear objective function, 16. Null space, 3.
Linear programn, 1, 16. dimension of (see nz).
Linear Program (see LP). Number of infeasibilities, 17.
Linear term in objective function, 1, 10. Nz, 3, 5, 17.
Lines of code in LSSOL, 1, 20. Nzl, 5, 17.
LL (printed constraint status), 18.

LcsCiN, 18. .0BJ, 10 (definition).
" Local minimum, 1 (also see Weak minimum). Objective, 17.

Lower Bound, 17, 18 (also see BL). Objective function (F), 1.
"." LP (problem type), 1, 7, 8, 16. data matrix (see A and A). ,.,,

LSI (problem type), 1, 7, 8, 16, 24. linear, 16.
LS2 (problem type), 1, 7, 8, 16. Objective matrix (see A and A).
LS3 (problem type), 1, 7, 8, 16. Observation vector (b), 1.
LS4 (problem type), 1, 7, 8, 16. Optimal Lagrange multiplier, 3-4 (definition),
LSFILE, 12 13. 10, 18.

>-..- .. ---. '- . - . . ....- --- -. ............... - ..- -- '. -- :.
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Optimal solution, 10. RNIN, 22.
Optimality phase, 2 (also see Method of LSSOL). RTEPS, 22.
Optimality Phase Iteration Limit, 10, 14 (defi- RTMAX, 22."

nition). RTMIN, 22.
* (Optintality test, 10.

Option-handling routines, 21. Search direction (p), 2.
Optional parameters, 12-16. Second-derivative matrix, I (also see Hessian ma-

checklist and default values, 16. trix).
cumulative changes, 13. Semi-definite Hessian matrix, example, 25.
description, 14-40. Sequential quadratic progranming method, 6.

Options file, 12--13. Simplex method, 2, 5.
Ordering of variables, 2 (also see El). Simplex steps, 2, 5.
Orthogonal transformation, 2. Sinf (weighted sum of infeasibilities), 17.
Overflow, 19. Single precision

table of machine constants, 23.
p (search direction), 2, 3. version of code, 20.

PFR, 2, 3. Singular Rz, 3, 4, 10, 17.
Parameter vector (see x). Small Lagrange multiplier, 10.
Parameters of LSSOL, 7-11. Source files, list, 20.
Phase 1 (see Feasibility phase). Specification of LSSOL, 7.
Phase 2 (see Optimality phase). Standard simplex method, 2.
Phrase (to modify optional parameter), 12. State, 18 (also see ISTATE).
Precision, machine (see ). Stationary point, 3.
Prinmal method, 2. Status indicator for constraints (see ISTATE).
Prime Systems, 20. Step (printed value), 17 (also see Step length).
Print Level, 10, 11, 15 (definition). Step length (a), 2, 4, 17.

, 1'rinted output, description, 17-18. choice of, 4, 5.
Printout, control of, 15. Strong local minimum, 1, 10.
Problem type (see Problem Type). Surn of infeasibilities, 3-4.
Problem Type, 1, 15-16 (definition). minimum, 17.
Projected gradient, 3, 10. weighted, 17.

norm, 17. Synonyms (for optional parameters), 12.

- Q,3 T, 2, 5.
QFR, 2. condition estimate, 18 (also see Cond T).
QP (problem type), 7, 8. printout of diagonals, 15.
QPI (problem type), 1, 7, 8, 16. T (printed constraint designation), 17 (also see
QP2 (problem type), 1, 7, 8, 16, 25. Temporary bound).
QP3 (problem type), 1, 7, 8, 16. Tape
QP4 (problem type), 1, 7, 8, 16. characteristics, 20.
QR factorization, 4. format 20.
Quadratic program, 1, 10. Temporary bound, 5, 17.

example, 25. TQ factorization, 2, 5, 15.
Quadratic Program (problem type) (see QP2). Transformed residual vector (1), 3, 4, 10.

Qualifying phrase (in optional parameter), 12. Trapezoidal matrix, 1, 9 (also see Triangular fac- . -

* - tor).
R, 3, 4, 9, 15 (also see RI). Triangular factor, 3, 4, 9, 15.

.ordering of columns (see l(x). of Hessian as data matrix, 0.

printout of diagonals, 15. Two-phase lrimal method, 2.
R1, 4, 16.

condition estimate of, 18 (also see Cond gzl). u (upper bound vector), 1, 17 (also see BU).
:Rz, 3, 4, 10, 17. Un, 24.
singular, 3, 4, 10, 17. Ut L, 24.

Rank, 4, 10. U (printed constraint designation), 17.
determination, 10. UlL (printed constraint status), 18.

Rank Tolerance, 4, 10 (definition), 18. Unbounded
REAL, 7. objective function, 10, 15.
References, 26. solution, 1, 10.
Re-ordering of variables, 2 (also see KX). step, 15.
Reset optional parameters, 13-14. Underflow, 19.
Residual, 10, 18. Unique solution, 1, 10.
Plesidual vector, 3, 4, 10. Univac 1100, 20.
Reverse-triangular matrix, 2 (also see T). Unknowns, vector of (see z and I).
RMAX, 22. Updating matrix factorizations, routines for, 21.
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Upper bound. 18 (also see u and flU).
tUpper-trapezoidil matrix, 1, 9 (also see Tfriang- .

ular factor). N
Upper- trianguilar factor (see Trianguilar factor).

Valid option strings, examples of, 12. d N

* Value, 18.
VkRBL, 18.
Variable, 18. i
Variance-covariance matrix, 9.

* Vector
of observations (b), 1 (also see B).
of unknowns (x), 1 (also see X).

* Vertex, 2, 3, 17.
Violations, constraint (see Infcasibilities). _

W, 11 (definition).
Warm Start, 6, 8, 14 (definition), 19.

*Weak inuninium, 1, 10.
example of, 24.

*Weak LP solution (see Weak midnimum).
Weak LS solution (see Weak minimum).

*Weak QP solution (see Weak minimum).
weighted sum of in feasibili ties, 4, 17 (also see

Infeasible problem).
* WtACH, 22 (also see Machine constants).

Working p~recision, 7 (also seec)
* Working set

changes in, 4.
condition estimate, 18 (also see Cond T).
definition, 2.U

Workspace parameters of LSSOL, 10-11.

x (vector of unknowns), 1.
printout, 18.

X, 0 (definition).

Y, 2.

Z (basis for null space), 2 (also see Null space).
dimension of (see nz).

Zt, 4-5, 17.
ZTg,,, 5 (also see Projected gradient).
Z 2, 4-5.
Z (printed constraint designation), 17.
Zero Lagrange multiplier, 10 (also see Lagrange

multiplier).

-(printed constraint status), 18 (also see lnfea-
sibile problem).

++ (printed constraint status), 18 (also see Infea-

sible problem). 
%%
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